
Turing Machines



A Turing Machine has a finite state controller and a tape that is 
infinite in both directions.  The input is on the tape at the start of 
the computation; the  rest of the tape is blank.  The controller starts 
at the beginning of the input and reads one tape symbol at a time.

A move consists of the following steps, taken in order:
a) Read the current tape symbol
b) Change the state of the controller
c) Write a symbol over the one just read
d) Move left or right one symbol on the tape.

The Turing Machine accepts the input if it ever enters a final state, 
whether or not it has read  the entire input.



Formally a Turing Machine is (Q, S, G, d, s, B, F) where
Q is the finite set of states
S is the alphabet of input symbols
G is the tape alphabet
d is the transition function (d(q,a)=(p,b,d)  where q and p are 

states, a and b are tape symbols, and d is a direction to move 
on the tape)

s is the start state
B is the blank symbol on the tape
F is the set of final states



Notation for transitions:

means: "If you are in state p and the current tape symbol is A, 
transition to state q, overwrite the A on the tape with B and move to 
the right on the tape."

p q
A|BR



Example: This accepts {0n1n | n > 0}

q0

Y|YR
0|0R

q1 q2

q3 q4

0|XR
1|YL

Y|YL
0|0L

X|XR

Y|YR

Y|YR

B|BR

q0: If 0 overwrite with X and go to 
q1; if Y goto q3.

q1: Walk over 0s until you find 1, 
then overwrite with Y and go to 
q2.

q2: Move left over Ys and 0s 
looking for X; when you find X 
more right and go to q0.

q3: Move right looking for a blank; 
if you find it go to q4.

q4: Accept



q0

Y|YR
0|XR

q1 q2

q3 q4

0|XR
1|YL

Y|YL
0|XL

X|XR

Y|YR    

Y|YR

B|BR

XXXYYY
000111     end in q4; accept

XXYY
00111      doesn't get to a 

blank from q3.

XXXYY
00011      doesn't get to a 1 

from q1.



Configuration descriptions: let X1...Xi-1pXi..Xn mean that the tape 
contents are X1..Xn, the automaton is currently in state p, and the tape 
head is over Xi.  We will use symbol => to indicate one step of the 
computation:

q00011 => Xq1011 => X0q111 => Xq20Y1 => q2X0Y1 => Xq00Y1 =>

=> XXq1Y1 => XXYq11 => XXq2YY => Xq2XYY => XXq0YY => XXYq3Y =>

=> XXYYq3 => XXYYq4 => ACCEPT



A more complex example:  This starts with 0m10n on the tape and ends 
with 0nxm; it performs multiplication.

Step 1: Start with 0m10n; write 1 at the end of the input to give 0m10n1.
Step 2a: If there is a 0 at the start replace it with B (blank); go to the

first 1.
2b: For each 0 prior to the second 1  replace it with X and copy a 

0 at the end of the tape.  This step makes a copy of the
second set of 0s.

2c: Replace all of the X's with 0s, then go back to the beginning of
the inputl.  Repeat Step 2.

Step 3: When there is a 1 at the beginning of the input erase both 1s 
and the 0s in between.

Step 4:  Halt (Accept)



q0

0|0R

q1 q2

1|1R
B|1L

1|1L
0|0L

q3

0|0R

B|BRStep 1:

q3

0|0R

q4 q5

0|BR
1|1RStep 2a:



q5

0|0R

q6 q7

0|XR
1|1R

0|0R

q8
B|0L

0|0L
1|1L

X|XR

Step 2b:

q5

X|0L

q9 q10

1|1L
1|1L

0|0L

q3
B|BRStep 2c:



q11 q12
1|BR

0|BR

Step 3:

q3

1|BR



Terminology: We say that a language is recursively enumerable if 
there is  a Turing Machine that accepts it. We say that a language is 
recursive if there is a Turing Machine that halts on all inputs and 
accepts the language.  

With a recursive language we can tell if any string is in the language 
or not: its Turing Machine either halts in a final state or a non-final 
state.

With a recursively enumerable language the TM will halt and accept 
on strings that are in the language, but might run forever on strings 
that aren't in the language.



Programming Tricks
I. Remembering Data
Suppose we have a portion of a TM like this:

p q r

1|1R
0|0R

a|aR

s

t

On input 0a0 we want to end up in state s; on 1a1 we want to end 
up in state t. In other words, we want to "remember" the value we 
read in state p.

0|0R

1|1R



To do this we make 2 copies of the p-to-r sequence:

p

q1
r1

a|aR
s

tq2 r2

a|aR

0|0R

1|1R

We can think of this as storing information in the controller:

0|0R

1|1R

p r

1|1R, x=1
0|0R, x=0

a|aR

st
x|xRq

x



II. Multiple Tracks
We can think of a TM as having multiple tracks that we process 
together. The tape alphabet G is finite so instead of one track with G
we might have 3 with GxGxG, where tape "symbol" (a,b,c) represents 
a on track 1, b on track 2, and c on track 3.  We read all 3 tracks at 
each step.

We usually think of the first track as containing the original input and 
the other tracks as scratch work developed during the execution of 
the TM.



Example: This 2-track TM accepts the non-context-free language 
{wcw | w∈(0+1)*}

q0 q2

0|0R, a=0
B|*

q3
q1a

q4

q5 q6

1|1R, a=1
B|*

0|0R
B|B

1|1R
B|B

c|cR
B|B

0|0R
*|*

1|1R
*|*

a|aL
B|*

0|0L
*|*

1|1L
*|*

0|0L
B|B

c|cL
B|B

1|1L
B|B

0|0R
*|*

1|1R
*|*

0|0R
*|*

1|1R
*|*

c|cR
B|B

B|BR
B|B



III. Multiple Tape TMs (with independent tape heads)

We can define a Turing Machine with k independent tapes. We start 
with the input on the first tape and the others blank. At each step we 
read the current symbol off each tape, use those k symbols  to 
transition to a new state, write a new symbol on each tape and choose 
a direction to move on each tape.

We can simulate such a k-tape TM by one with 1 tape and 2k tracks.  
We will represent each tape with 2 tracks: one with the contents of 
the tape and one with a marker showing us the current position of the 
tape head.



Each node of the k-tape automaton is split into 3k nodes in the 
simulator to keep track of the answers to the k questions: where is 
the current position of tape i relative to the current position in the 
simiulator: to the left (L), to the right (R) or at the current position 
(C)?

i.e., with a simulator for a 2-tape TM node q is split into qLL, qLC, qLR, 
qCL, qCC, qCR, qRL, qRC, qRR.  If s is the start symbol we start the 
simulator in sCC.



To simulate a move of the multiple-tape TM
a) Visit the current position of each tape and gather the symbols.
b) Revisit each position, overwrite the tape symbol and update 

the current tape position.
c) Update the simulator's state.

Note that if we are moving left looking for the current position on 
tape 1 and we pass the  current position of tape 2, we transition from 
state qRR to qRL, and keep moving left.  The 3k variants of each node 
really do allow us to keep track of how to find the current position of 
each tape.



These simulators show:

Theorem: Any language accepted by (and any computation 
performed on) a k-track TM is also accepted by (or performed on) a 
standard TM.

Theorem: Any language accepted by (and any computation 
performed on) a k-tape TM is also accepted by (or performed on) a 
standard TM.



Nondeterministic TMS have multivalued transition functions:
d(p,a) = {(q1,Y1,D1), (q2,Y2,D2) ... (qn,Yn,Dn)}

We can make a 3-tape TM that computes the reachable 
configurations of  a nondeterministic TM and halts in an accept state 
of the nondeterministic TM ever does.



Here are the three tapes:

Tape 1 holds the input, such as 0110

Tape 2 has 2 tracks.  The first track  has a list of computed  
configurations separated by *-symbols.  The second track is blank 
except for a symbol that marks the start of the current 
configuration:

q00110*0q1110*0Xq110*......
↑

Tape 3 just has scratch work



Step 1: Copy the input to Tape 2, prefix it with q0 to make it a 
configuration, and mark it as the current configuration.

Step 2: Copy the current configuration to Tape 3. From the 
configuration you can read the current state q and current input 
symbol a.  For each transition value in d(q,a) copy  the current 
configuration to the end of the configuration track on Tape 2 and 
update it according to the transition rules.  For example, if the 
current configuration is 01Xq11 and d(q1,1)={(q2,X,R),(q3,Y,L)} then we 
want to write onto Tape 2  *01XXq2*01q3XY

Step 3  Update the current configuration marker to the next 
configuration and redo Step 2. 



If this process ever writes a configuration onto Tape 2 containing a 
final state, the simulator halts and accepts.

This gives us:

Theorem: If language L is accepted by a nondeterministic TM then L
is also accepted by a standard deterministic TM.


